摘要翻译:
设A,B表示d阶二元形式,设C_{2r-1}=(A,B)_{2r-1}是它们的线性组合体在1与(d+1)/2之间的序列。已知C_1和C_3共同决定了A和B产生的铅笔,因此间接决定了较高的C_{2r-1}。本文给出了所有r>2的显式公式,使我们可以从C_1和C_3的知识中恢复C_{2r-1}。计算采用经典不变理论的符号方法和角动量的量子理论。对于群SL2,我们的定理与S_d的第二次外幂表示有关。我们给出了群SL_3的一个例子,以表明这样的结果也适用于其他类型的表示。
---
英文标题:
《On the Linear Combinants of a Binary Pencil》
---
作者:
Abdelmalek Abdesselam, Jaydeep Chipalkatti
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Representation Theory 表象理论
分类描述:Linear representations of algebras and groups, Lie theory, associative algebras, multilinear algebra
代数和群的线性表示,李理论,结合代数,多重线性代数
--
---
英文摘要:
Let A,B denote binary forms of order d, and let C_{2r-1} = (A,B)_{2r-1} be the sequence of their linear combinants for r between 1 and (d+1)/2. It is known that C_1 and C_3 together determine the pencil generated by A and B, and hence indirectly the higher C_{2r-1}. In this paper we exhibit explicit formulae for all r>2, which allow us to recover C_{2r-1} from the knowledge of C_1 and C_3. The calculations make use of the symbolic method of classical invariant theory, as well as the quantum theory of angular momentum. Our theorem pertains to the second exterior power representation of S_d, for the group SL_2. We give an example for the group SL_3 to show that such a result may hold for other categories of representations.
---
PDF链接:
https://arxiv.org/pdf/0802.3149