摘要翻译:
最近,Prasad和Yeung对所有可能的伪射影平面的基本群进行了分类。根据他们的结果,许多假射影平面都承认一个非平凡自同构群,在这种情况下,它同构于$\bbz/3\bbz$,$\bbz/7\bbz$,$7:3$,或$(\bbz/3\bbz)^2$,其中$7:3$是唯一的21阶非阿贝尔群。设$G$是一个伪射影平面$X$的自同构群。本文对商曲面$x/G$的所有可能结构及其最小分辨率进行了分类。
---
英文标题:
《Quotients of fake projective planes》
---
作者:
JongHae Keum
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
Recently, Prasad and Yeung classified all possible fundamental groups of fake projective planes. According to their result, many fake projective planes admit a nontrivial group of automorphisms, and in that case it is isomorphic to $\bbZ/3\bbZ$, $\bbZ/7\bbZ$, $7:3$, or $(\bbZ/3\bbZ)^2$, where $7:3$ is the unique non-abelian group of order 21. Let $G$ be a group of automorphisms of a fake projective plane $X$. In this paper we classify all possible structures of the quotient surface $X/G$ and its minimal resolution.
---
PDF链接:
https://arxiv.org/pdf/0802.3435