摘要翻译:
设$F:S\FRB$为具有5属纤维的表面纤维。我们发现曲面的基本不变量之间存在线性关系。即$k_f^2=\chi_f+n$,其中$n$是三角纤维的数目。我们的证明是基于对相对规范代数$\cal{R}(f)$的分析。
---
英文标题:
《Fibred surfaces with general pencils of genus 5》
---
作者:
Elisa Tenni
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
Let $f:S \fr B$ be a surface fibration with fibres of genus 5. We find a linear relation between the fundamental invariants of the surface. Namely $K_f^2=\chi_f+N$ where $N$ is the number of trigonal fibres. Our proof is based on the analysis of the relative canonical algebra $\cal{R}(f)$.
---
PDF链接:
https://arxiv.org/pdf/0804.0388