全部版块 我的主页
论坛 经济学人 二区 外文文献专区
340 0
2022-03-07
摘要翻译:
设k是一个数域,设S是P^1的一个有限的k-有理点集。我们将x:=p^1k-s的基动群的Deligne-Goncharov结构与x上混合Tate动机范畴的Tannaka群格式联系起来。
---
英文标题:
《Tate motives and the fundamental group》
---
作者:
H\'el\`ene Esnault and Marc Levine
---
最新提交年份:
2007
---
分类信息:

一级分类:Mathematics        数学
二级分类:Algebraic Geometry        代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics        数学
二级分类:K-Theory and Homology        K-理论与同调
分类描述:Algebraic and topological K-theory, relations with topology, commutative algebra, and operator algebras
代数和拓扑K-理论,与拓扑的关系,交换代数和算子代数
--

---
英文摘要:
  Let k be a number field, and let S be a finite set of k-rational points of P^1. We relate the Deligne-Goncharov contruction of the motivic fundamental group of X:=P^1_k- S to the Tannaka group scheme of the category of mixed Tate motives over X.
---
PDF链接:
https://arxiv.org/pdf/0708.4034
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群