摘要翻译:
我们建立了开闭弦理论的Batalin-Vilkovisky量子主方程,并证明了相应的模空间给出了一个解,即它们的基本链的母函数。该方程编码了边界黎曼曲面模空间紧化的拓扑结构。期望J-全纯曲线的模空间满足相同的方程,从这个观点出发,我们讨论了目标空间等于点的情况。我们还引入了对称开闭拓扑共形场论的概念,并研究了与之相关的L_infty和A_infty代数结构。
---
英文标题:
《Open-closed moduli spaces and related algebraic structures》
---
作者:
Eric Harrelson, Alexander A. Voronov, J. Javier Zuniga
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Quantum Algebra 量子代数
分类描述:Quantum groups, skein theories, operadic and diagrammatic algebra, quantum field theory
量子群,skein理论,运算代数和图解代数,量子场论
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
We set up a Batalin-Vilkovisky Quantum Master Equation for open-closed string theory and show that the corresponding moduli spaces give rise to a solution, a generating function for their fundamental chains. The equation encodes the topological structure of the compactification of the moduli space of bordered Riemann surfaces. The moduli spaces of bordered J-holomorphic curves are expected to satisfy the same equation, and from this viewpoint, our paper treats the case of the target space equal to a point. We also introduce the notion of a symmetric Open-Closed Topological Conformal Field Theory and study the L_\infty and A_\infty algebraic structures associated to it.
---
PDF链接:
https://arxiv.org/pdf/0709.3874