摘要翻译:
在k-不稳定的toric簇上,我们证明了最优不稳定凸函数的存在性。我们证明,如果这是分段线性的,那么它会引起分解成半可分块,类似于不稳定向量丛的Harder-Narasimhan过滤。我们还证明了如果Calabi流在一个toric变体上一直存在,那么它使Calabi泛函极小。在这种情况下,Calabi泛函的下确界由所有不稳定测试构型上的归一化Futaki不变量的上确界给出,正如Donaldson猜想所预言的那样。
---
英文标题:
《Optimal test-configurations for toric varieties》
---
作者:
G\'abor Sz\'ekelyhidi
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Differential Geometry 微分几何
分类描述:Complex, contact, Riemannian, pseudo-Riemannian and Finsler geometry, relativity, gauge theory, global analysis
复形,接触,黎曼,伪黎曼和Finsler几何,相对论,规范理论,整体分析
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
On a K-unstable toric variety we show the existence of an optimal destabilising convex function. We show that if this is piecewise linear then it gives rise to a decomposition into semistable pieces analogous to the Harder-Narasimhan filtration of an unstable vector bundle. We also show that if the Calabi flow exists for all time on a toric variety then it minimises the Calabi functional. In this case the infimum of the Calabi functional is given by the supremum of the normalised Futaki invariants over all destabilising test-configurations, as predicted by a conjecture of Donaldson.
---
PDF链接:
https://arxiv.org/pdf/0709.2687