摘要翻译:
对于非奇异簇X(dim X>1)上的归一化超越度零弧值v,我们描述了X的弧空间的最大不可约子集C(v),使得沿C(v)的一般弧的消失顺序给出的值等于v。我们用v的赋值理想序列和与v相关的无穷近点序列在代数上描述了C(v)。当X是曲面时,我们的构造也适用于任何除法赋值v。在这种情况下,C(v)与Ein、Lazarsfeld和Mustata与v相关的子集一致。
---
英文标题:
《Zero dimensional arc valuations on smooth varieties》
---
作者:
Yogesh More
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
For a normalized transcendence degree zero arc valuation v on a nonsingular variety X (with dim X > 1), we describe the maximal irreducible subset C(v) of the arc space of X such that the valuation given by the order of vanishing along a general arc of C(v) equals v. We describe C(v) both algebraically, in terms of the sequence of valuation ideals of v, and geometrically, in terms of the sequence of infinitely near points associated to v. When X is a surface, our construction also applies to any divisorial valuation v, and in this case C(v) coincides with a subset Ein, Lazarsfeld, and Mustata associate to v.
---
PDF链接:
https://arxiv.org/pdf/0802.2079