摘要翻译:
本文研究了TG$上二次微分空间层的连通分量。利用线丛截面的某些一般性质,给出了连通分量数的一个上界;利用广义高斯映射作为不变量,给出了连通分量数的一个下界。对于具有足够多同阶零点的地层,我们可以精确地说出组分的数目。
---
英文标题:
《Connected components of strata of quadratic differentials over
Teichmuller space》
---
作者:
Katharine C. Walker
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Geometric Topology 几何拓扑
分类描述:Manifolds, orbifolds, polyhedra, cell complexes, foliations, geometric structures
流形,轨道,多面体,细胞复合体,叶状,几何结构
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
In this paper, we study connected components of strata of the space of quadratic differentials lying over $\T_g$. We use certain general properties of sections of line bundles to put a upper bound on the number of connected components, and a generalized version of the Gauss map as an invariant to put a lower bound on the number of such components. For strata with sufficiently many zeroes of the same order we can state precisely the number of components.
---
PDF链接:
https://arxiv.org/pdf/0805.0434