摘要翻译:
定义并研究了具有Frobenius半线性自同态的模的模栈。这些堆栈可以看作是变量Galois表示的系数的参数化,是Kisin在研究局部Galois表示的变形空间时所使用的Kisin-Breuil$\phi$-模空间的全局变体。我们还为这些空间定义了一个严格的分析周期图,我们展示了如何用“局部模型”来描述它们的局部结构,我们展示了如何用Bruhat-Tits建筑来研究它们的特殊纤维。
---
英文标题:
《Phi-modules and coefficient spaces》
---
作者:
G. Pappas, M. Rapoport
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Number Theory 数论
分类描述:Prime numbers, diophantine equations, analytic number theory, algebraic number theory, arithmetic geometry, Galois theory
素数,丢番图方程,解析数论,代数数论,算术几何,伽罗瓦理论
--
---
英文摘要:
We define and study certain moduli stacks of modules equipped with a Frobenius semi-linear endomorphism. These stacks can be thought of as parametrizing the coefficients of a variable Galois representation and are global variants of the spaces of Kisin-Breuil $\Phi$-modules used by Kisin in his study of deformation spaces of local Galois representations. We also define a version of a rigid analytic period map for these spaces, we show how their local structure can be described in terms of "local models", and we show how Bruhat-Tits buildings can be used to study their special fibers.
---
PDF链接:
https://arxiv.org/pdf/0811.1170