摘要翻译:
本文研究系数为任意维数的G_K的晶体表示,其中K是A阶Q_p的未分支扩张。本文证明了当σ不变Hodge-Tate权小于p-1时Fontaine-Laffaille型定理,该定理建立了晶体表示的Galois稳定格与强可分的phi格之间的双射。在推广Breuil工作的基础上,我们对2维G_K的所有可约和不可约晶体表示进行了分类,并描述了它们的mod p约化。我们将Deligne、Fontaine-Serre和Edixhoven的一些结果推广到Hilbert模形式在不变Hodge-Tate权小于p-1时的表示。
---
英文标题:
《Crystalline representations of G_Qp^a with coefficients》
---
作者:
Hui June Zhu
---
最新提交年份:
2009
---
分类信息:
一级分类:Mathematics 数学
二级分类:Number Theory 数论
分类描述:Prime numbers, diophantine equations, analytic number theory, algebraic number theory, arithmetic geometry, Galois theory
素数,丢番图方程,解析数论,代数数论,算术几何,伽罗瓦理论
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
This paper studies crystalline representations of G_K with coefficients of any dimension, where K is the unramified extension of Q_p of degree a. We prove a theorem of Fontaine-Laffaille type when \sigma-invariant Hodge-Tate weight less than p-1, which establishes the bijection between Galois stable lattices in crystalline representations and strongly divisible \phi-lattice. In generalizing Breuil's work, we classify all reducible and irreducible crystalline representations of G_K of dimensional 2, then describe their mod p reductions. We generalize some results (of Deligne, Fontaine-Serre, and Edixhoven) to representations arising from Hilbert modular forms when \sigma-invariant Hodge-Tate weight less than p-1.
---
PDF链接:
https://arxiv.org/pdf/0807.1078