摘要翻译:
重要性抽样是减少Monte Carlo估计方差的有力工具。基于参数族内Monte Carlo估计方差最小的准则,给出了求最优倾角测度的一般方法。为此,当底层分布的矩母函数存在时,我们得到了最优交替分布的一个简单而明确的表达式。该算法具有很好的通用性,适用于正态分布、非中心分布、复合泊松过程等。为了说明该方法的广泛适用性,我们研究了金融风险管理中的VaR计算和统计推断中的bootstrap置信域。
---
英文标题:
《Efficient Importance Sampling for Rare Event Simulation with
Applications》
---
作者:
Cheng-Der Fuh and Huei-Wen Teng and Ren-Her Wang
---
最新提交年份:
2013
---
分类信息:
一级分类:Statistics 统计学
二级分类:Methodology 方法论
分类描述:Design, Surveys, Model Selection, Multiple Testing, Multivariate Methods, Signal and Image Processing, Time Series, Smoothing, Spatial Statistics, Survival Analysis, Nonparametric and Semiparametric Methods
设计,调查,模型选择,多重检验,多元方法,信号和图像处理,时间序列,平滑,空间统计,生存分析,非参数和半参数方法
--
一级分类:Quantitative Finance 数量金融学
二级分类:Risk Management 风险管理
分类描述:Measurement and management of financial risks in trading, banking, insurance, corporate and other applications
衡量和管理贸易、银行、保险、企业和其他应用中的金融风险
--
---
英文摘要:
Importance sampling has been known as a powerful tool to reduce the variance of Monte Carlo estimator for rare event simulation. Based on the criterion of minimizing the variance of Monte Carlo estimator within a parametric family, we propose a general account for finding the optimal tilting measure. To this end, when the moment generating function of the underlying distribution exists, we obtain a simple and explicit expression of the optimal alternative distribution. The proposed algorithm is quite general to cover many interesting examples, such as normal distribution, noncentral $\chi^2$ distribution, and compound Poisson processes. To illustrate the broad applicability of our method, we study value-at-risk (VaR) computation in financial risk management and bootstrap confidence regions in statistical inferences.
---
PDF链接:
https://arxiv.org/pdf/1302.0583