全部版块 我的主页
论坛 经济学人 二区 外文文献专区
401 0
2022-03-11
摘要翻译:
设我们是一个射影K3曲面。证明了S的Kahler模的0维尖点与S的扭曲Fourier-Mukai模的一一对应,从而导出了Kahler模的0维尖点的计数公式。给出了大Picard数K3曲面间有理映射的应用。当S的Picard数为1时,显式地计算了双射对应。
---
英文标题:
《On the 0-dimensional cusps of the Kahler moduli of a K3 surface》
---
作者:
Shouhei Ma
---
最新提交年份:
2009
---
分类信息:

一级分类:Mathematics        数学
二级分类:Algebraic Geometry        代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics        数学
二级分类:Number Theory        数论
分类描述:Prime numbers, diophantine equations, analytic number theory, algebraic number theory, arithmetic geometry, Galois theory
素数,丢番图方程,解析数论,代数数论,算术几何,伽罗瓦理论
--

---
英文摘要:
  Let S be a projective K3 surface. It is proved that the 0-dimensional cusps of the Kahler moduli of S are in one-to-one correspondence with the twisted Fourier-Mukai partners of S. This leads to a counting formula for the 0-dimensional cusps of the Kahler moduli. Applications to rational maps between K3 surfaces with large Picard numbers are given. When the Picard number of S is 1, the bijective correspondence is calculated explicitly.
---
PDF链接:
https://arxiv.org/pdf/0812.4132
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群