摘要翻译:
本文研究了P^3中亏格4的Chow半可定曲线模空间的GIT构造。利用Mumford提出的GIT方法和变形理论,我们给出了这个模空间的模描述。当Chow曲线不可约或不可约时,我们将其分为Chow稳定曲线和Chow半可定曲线。然后我们计算出曲线有两个分量的情况。我们的分类为理解P^3中从属4的稳定曲线的模空间到属4的Chow半可定曲线的模空间的双形映射提供了一些线索。
---
英文标题:
《Chow Stability of Curves of Genus 4 in P^3》
---
作者:
Hosung Kim
---
最新提交年份:
2010
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
In the paper, we study the GIT construction of the moduli space of Chow semistable curves of genus 4 in P^3. By using the GIT method developed by Mumford and a deformation theoretic argument, we give a modular description of this moduli space. We classify Chow stable or Chow semistable curves when they are irreducible or nonreduced. Then we work out the case when a curve has two components. Our classification provides some clues to understand the birational map from the moduli space of stable curves of genus 4 to the moduli space of Chow semistable curves of genus 4 in P^3.
---
PDF链接:
https://arxiv.org/pdf/0806.0731