摘要翻译:
给出了带n个标号点的g型曲线的模空间$\modm_{g,n}$中格点的定义和计数。这产生了一个多项式,其系数包括模空间的欧拉特性和紧致模空间上的重言交数。
---
英文标题:
《Counting lattice points in the moduli space of curves》
---
作者:
Paul Norbury
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Geometric Topology 几何拓扑
分类描述:Manifolds, orbifolds, polyhedra, cell complexes, foliations, geometric structures
流形,轨道,多面体,细胞复合体,叶状,几何结构
--
---
英文摘要:
We show how to define and count lattice points in the moduli space $\modm_{g,n}$ of genus g curves with n labeled points. This produces a polynomial with coefficients that include the Euler characteristic of the moduli space, and tautological intersection numbers on the compactified moduli space.
---
PDF链接:
https://arxiv.org/pdf/0801.4590