摘要翻译:
我们讨论了有限域上曲线的Riemann假设的Enrico Bombieri的证明。重新表述,它指出定义在有限域$\f_q$上的曲线$\c$上的点数为$q+O(\sqrt{q})$。第一个证明是由Andr\'eWeil在1942年给出的。这个证明使用了$\c\times\c$上的因子交集,使得到目前为止对原始黎曼假设的应用不成功,因为$\spec\z\times\spec\z=\spec\z$是一维的。斯捷潘诺夫于1969年发现了一种新的证明方法。这种方法在1973年被Bombieri大大简化和推广。Bombieri的方法使用$\c\times\c$上的函数,再次排除了直接转换为原始黎曼假设的证明。然而,$\c\times\c$上的两个坐标具有不同的作用,一个坐标扮演多项式变量的几何角色,另一个坐标扮演多项式系数的算术角色。$\c$的Frobenius自同构作用于$\c\乘以\c$的几何坐标。在最后一节中,我们对Nevanlinna理论如何提供一个在几何坐标上带有Frobenius作用的二维的$\spec\z\times\spec\z$模型提出了一些建议。
---
英文标题:
《The Riemann Hypothesis for Function Fields over a Finite Field》
---
作者:
Machiel van Frankenhuijsen
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Number Theory 数论
分类描述:Prime numbers, diophantine equations, analytic number theory, algebraic number theory, arithmetic geometry, Galois theory
素数,丢番图方程,解析数论,代数数论,算术几何,伽罗瓦理论
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
We discuss Enrico Bombieri's proof of the Riemann hypothesis for curves over a finite field. Reformulated, it states that the number of points on a curve $\C$ defined over the finite field $\F_q$ is of the order $q+O(\sqrt{q})$. The first proof was given by Andr\'e Weil in 1942. This proof uses the intersection of divisors on $\C\times\C$, making the application to the original Riemann hypothesis so far unsuccessful, because $\spec\Z\times\spec\Z=\spec\Z$ is one-dimensional. A new method of proof was found in 1969 by S. A. Stepanov. This method was greatly simplified and generalized by Bombieri in 1973. Bombieri's method uses functions on $\C\times\C$, again precluding a direct translation to a proof of the original Riemann hypothesis. However, the two coordinates on $\C\times\C$ have different roles, one coordinate playing the geometric role of the variable of a polynomial, and the other coordinate the arithmetic role of the coefficients of this polynomial. The Frobenius automorphism of $\C$ acts on the geometric coordinate of $\C\times\C$. In the last section, we make some suggestions how Nevanlinna theory could provide a model of $\spec\Z\times\spec\Z$ that is two-dimensional and carries an action of Frobenius on the geometric coordinate.
---
PDF链接:
https://arxiv.org/pdf/0806.0044