摘要翻译:
利用X中包含的L维平面的变化量F(X)研究了射影空间中超曲面X的有理系数周动。如果X的次足够小,则证明了X的动的本原部分是F(X)中适当完全交的动的直和与Lefschetz动的L次扭Q(-L)的张量积。
---
英文标题:
《Motives of hypersurfaces of very small degree》
---
作者:
Andre Chatzistamatiou
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
We study the Chow motive (with rational coefficients) of a hypersurface X in the projective space by using the variety F(X) of l-dimensional planes contained in X. If the degree of X is sufficiently small we show that the primitive part of the motive of X is the tensor product of a direct summand in the motive of a suitable complete intersection in F(X) and the l-th twist Q(-l) of the Lefschetz motive.
---
PDF链接:
https://arxiv.org/pdf/0801.2494