摘要翻译:
设X是定义在有理上的几何积分射影三次超曲面,维数为D,奇异轨迹维数至多为D-4。对于任何ε>0,我们证明X最多包含O(B^{d+ε})个高度有理点。这个估计中的隐含常数取决于ε的选择和定义X的三次型系数。
---
英文标题:
《Counting rational points on cubic hypersurfaces》
---
作者:
T.D. Browning
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Number Theory 数论
分类描述:Prime numbers, diophantine equations, analytic number theory, algebraic number theory, arithmetic geometry, Galois theory
素数,丢番图方程,解析数论,代数数论,算术几何,伽罗瓦理论
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
Let X be a geometrically integral projective cubic hypersurface defined over the rationals, with dimension D and singular locus of dimension at most D-4. For any \epsilon>0, we show that X contains O(B^{D+\epsilon}) rational points of height at most B. The implied constant in this estimate depends upon the choice of \epsilon and the coefficients of the cubic form defining X.
---
PDF链接:
https://arxiv.org/pdf/0707.2296