全部版块 我的主页
论坛 经济学人 二区 外文文献专区
527 0
2022-04-03
摘要翻译:
本文系统地研究了2D变量自由代数的项链李代数n的李代数结构。我们首先把n描述为一个sp(2d)-模。针对d=1,我们将n分解为sl2的最高权模的直和,其系数由一个封闭的公式给出。其次,我们观察到n有一个非平凡中心,它通过一般2x2矩阵偶的迹环的中心C链接到S(Sl2)的泊松中心。n的李代数结构在C上诱导出一个泊松结构,它的辛叶可以用海森堡李代数h描述为半直积SL2\r×h的李群的伴随轨道。最后,我们给出了二重Poisson代数与Poisson序之间的联系,证明了二重Poisson代数的所有迹环在其中心上都是Poisson序。
---
英文标题:
《On the structure of the necklace Lie algebra》
---
作者:
Jacques Alev and Geert Van de Weyer
---
最新提交年份:
2008
---
分类信息:

一级分类:Mathematics        数学
二级分类:Rings and Algebras        环与代数
分类描述:Non-commutative rings and algebras, non-associative algebras, universal algebra and lattice theory, linear algebra, semigroups
非交换环与代数,非结合代数,泛代数与格论,线性代数,半群
--
一级分类:Mathematics        数学
二级分类:Algebraic Geometry        代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--

---
英文摘要:
  In this note, we initiate the systematic study of the Lie algebra structure of the necklace Lie algebra n of a free algebra in 2d variables. We begin by giving a description of n as an sp(2d)-module. Specializing to d = 1, we decompose n into a direct sum of highest weight modules for sl_2, the coefficients of which are given by a closed formula. Next, we observe that n has a nontrivial center, which we link through the center C of the trace ring of couples of generic 2x2 matrices to the Poisson center of S(sl_2). The Lie algebra structure of n induces a Poisson structure on C, the symplectic leaves of which we are able to describe as coadjoint orbits for the Lie group of the semidirect product sl_2\rtimes h of sl_2 with the Heisenberg Lie algebra h. Finally, we provide a link between double Poisson algebras on one hand and Poisson orders on the other hand, showing that all trace rings of a double Poisson algebra are Poisson orders over their center.
---
PDF链接:
https://arxiv.org/pdf/0801.1621
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群