摘要翻译:
假设$k$是一个任意字段。考虑域$k((x_1,…,x_n))$,它是变量$x_1,…,x_n$中形式幂级数环$k[[x_1,…,x_n]]$的商域,系数在$k$中。假设$\sigma$是$x_1,...,x_n$中的形式幂级数,其协效在$k$的代数闭包中。我们给出了$\sigma$在$k((x_1,...,x_n))$上代数的一个非常简单的充要条件。作为我们方法的一个应用,我们给出了赋值环$V$的一个刻划,它支配一个维数为2的优秀的Noetherian局部区域$R$,并且使得它的秩在传递到$R$的一个双形扩张完成后增加。
---
英文标题:
《Algebraic series and valuation rings over nonclosed fields》
---
作者:
Steven Dale Cutkosky and Olga Kashcheyeva
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Commutative Algebra 交换代数
分类描述:Commutative rings, modules, ideals, homological algebra, computational aspects, invariant theory, connections to algebraic geometry and combinatorics
交换环,模,理想,同调代数,计算方面,不变理论,与代数几何和组合学的联系
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
Suppose that $k$ is an arbitrary field. Consider the field $k((x_1,...,x_n))$, which is the quotient field of the ring $k[[x_1,...,x_n]]$ of formal power series in the variables $x_1,...,x_n$, with coefficients in $k$. Suppose that $\sigma$ is a formal power series in $x_1,...,x_n$ with coefficints in the algebraic closure of $k$. We give a very simple necessary and sufficient condition for $\sigma$ to be algebraic over $k((x_1,...,x_n))$. As an application of our methods, we give a characterization of valuation rings $V$ which dominate an excellent, Noetherian local domain $R$ of dimension two, and such that the rank increases after passing to the completion of a birational extension of $R$.
---
PDF链接:
https://arxiv.org/pdf/0710.5522