摘要翻译:
这是我2007年6月-7月在Goettingen的暑期学校“有限域上的高维几何”的讲稿。本文给出了有限域(包括$\ell=P$情形)上基于“四元数技巧”的阿贝尔变体同态的Tate定理的一个证明。事实上,用“有限系数”证明了这些定理的一个稍强的版本。
---
英文标题:
《Homomorphisms of abelian varieties over finite fields》
---
作者:
Yuri G. Zarhin
---
最新提交年份:
2020
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Number Theory 数论
分类描述:Prime numbers, diophantine equations, analytic number theory, algebraic number theory, arithmetic geometry, Galois theory
素数,丢番图方程,解析数论,代数数论,算术几何,伽罗瓦理论
--
---
英文摘要:
These are notes of my lectures at the summer school "Higher-dimensional geometry over finite fields" in Goettingen, June--July 2007. We present a proof of Tate's theorem on homomorphisms of abelian varieties over finite fields (including the $\ell=p$ case) that is based on a "quaternion trick". In fact, a a slightly stronger version of those theorems with "finite coefficients" is proven.
---
PDF链接:
https://arxiv.org/pdf/0711.1615