摘要翻译:
研究了由几乎完全交理想定义的空基轨迹的双形映射。双生性可以用两个Chern数的相等性来表示。我们根据某些希尔伯特系数给出了一种相对有效的计算它们的方法。在维数2中,不可约理想的结构自然导致通过计算机辅助方法计算Sylvester行列式。对于最多5次,我们给出了基理想的定义方程的全集。结果肯定地回答了D.考克斯提出的一些问题。
---
英文标题:
《On the homology of two-dimensional elimination》
---
作者:
J. Hong, A. Simis, W. V. Vasconcelos
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Commutative Algebra 交换代数
分类描述:Commutative rings, modules, ideals, homological algebra, computational aspects, invariant theory, connections to algebraic geometry and combinatorics
交换环,模,理想,同调代数,计算方面,不变理论,与代数几何和组合学的联系
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
We study birational maps with empty base locus defined by almost complete intersection ideals. Birationality is shown to be expressed by the equality of two Chern numbers. We provide a relatively effective method of their calculation in terms of certain Hilbert coefficients. In dimension two the structure of the irreducible ideals leads naturally to the calculation of Sylvester determinants via a computer-assisted method. For degree at most 5 we produce the full set of defining equations of the base ideal. The results answer affirmatively some questions raised by D. Cox.
---
PDF链接:
https://arxiv.org/pdf/0704.0608