摘要翻译:
我们描述了在[1]中引入的一个有效的景观,用于分析约束满足问题,如球面填充、K-SAT和图着色。这种几何结构在崎岖的能量景观中更熟悉的优化术语中重新表达了这些问题。特别是,它让人们理解了一个令人困惑的事实,即简单的程序远远超出了被认为是“硬”的过渡,并提出了一个定义新的、更高的、容易-硬的边界的算法。
---
英文标题:
《Constraint optimization and landscapes》
---
作者:
Florent Krzakala and Jorge Kurchan
---
最新提交年份:
2007
---
分类信息:
一级分类:Physics 物理学
二级分类:Quantum Physics 量子物理学
分类描述:Description coming soon
描述即将到来
--
一级分类:Physics 物理学
二级分类:Statistical Mechanics 统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
一级分类:Computer Science 计算机科学
二级分类:Computational Complexity 计算复杂度
分类描述:Covers models of computation, complexity classes, structural complexity, complexity tradeoffs, upper and lower bounds. Roughly includes material in ACM Subject Classes F.1 (computation by abstract devices), F.2.3 (tradeoffs among complexity measures), and F.4.3 (formal languages), although some material in formal languages may be more appropriate for Logic in Computer Science. Some material in F.2.1 and F.2.2, may also be appropriate here, but is more likely to have Data Structures and Algorithms as the primary subject area.
涵盖计算模型,复杂度类别,结构复杂度,复杂度折衷,上限和下限。大致包括ACM学科类F.1(抽象设备的计算)、F.2.3(复杂性度量之间的权衡)和F.4.3(形式语言)中的材料,尽管形式语言中的一些材料可能更适合于计算机科学中的逻辑。在F.2.1和F.2.2中的一些材料可能也适用于这里,但更有可能以数据结构和算法作为主要主题领域。
--
一级分类:Physics 物理学
二级分类:Adaptation and Self-Organizing Systems 自适应和自组织系统
分类描述:Adaptation, self-organizing systems, statistical physics, fluctuating systems, stochastic processes, interacting particle systems, machine learning
自适应,自组织系统,统计物理,波动系统,随机过程,相互作用粒子系统,
机器学习
--
---
英文摘要:
We describe an effective landscape introduced in [1] for the analysis of Constraint Satisfaction problems, such as Sphere Packing, K-SAT and Graph Coloring. This geometric construction reexpresses these problems in the more familiar terms of optimization in rugged energy landscapes. In particular, it allows one to understand the puzzling fact that unsophisticated programs are successful well beyond what was considered to be the `hard' transition, and suggests an algorithm defining a new, higher, easy-hard frontier.
---
PDF链接:
https://arxiv.org/pdf/709.1023