全部版块 我的主页
论坛 经济学人 二区 外文文献专区
229 0
2022-03-18
摘要翻译:
混沌神经网络近年来受到了广泛的关注。在本文中,我们建立了所谓的混沌迭代与一类特殊的人工神经网络:全局递归多层感知器之间的精确对应关系。我们形式化地证明了Devaney所定义的迭代是可能的,从而得到了第一个被证明是混沌的神经网络。几个不同结构的神经网络被训练表现出混乱的行为。
---
英文标题:
《Building a Chaotic Proved Neural Network》
---
作者:
Jacques M. Bahi and Christophe Guyeux and Michel Salomon
---
最新提交年份:
2011
---
分类信息:

一级分类:Computer Science        计算机科学
二级分类:Artificial Intelligence        人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
一级分类:Computer Science        计算机科学
二级分类:Cryptography and Security        密码学与安全
分类描述:Covers all areas of cryptography and security including authentication, public key cryptosytems, proof-carrying code, etc. Roughly includes material in ACM Subject Classes D.4.6 and E.3.
涵盖密码学和安全的所有领域,包括认证、公钥密码系统、携带证明的代码等。大致包括ACM主题课程D.4.6和E.3中的材料。
--
一级分类:Mathematics        数学
二级分类:Dynamical Systems        动力系统
分类描述:Dynamics of differential equations and flows, mechanics, classical few-body problems, iterations, complex dynamics, delayed differential equations
微分方程和流动的动力学,力学,经典的少体问题,迭代,复杂动力学,延迟微分方程
--
一级分类:Mathematics        数学
二级分类:General Topology        一般拓扑
分类描述:Continuum theory, point-set topology, spaces with algebraic structure, foundations, dimension theory, local and global properties
连续统理论,点集拓扑,代数结构空间,基础,维数理论,局部和全局性质
--

---
英文摘要:
  Chaotic neural networks have received a great deal of attention these last years. In this paper we establish a precise correspondence between the so-called chaotic iterations and a particular class of artificial neural networks: global recurrent multi-layer perceptrons. We show formally that it is possible to make these iterations behave chaotically, as defined by Devaney, and thus we obtain the first neural networks proven chaotic. Several neural networks with different architectures are trained to exhibit a chaotical behavior.
---
PDF链接:
https://arxiv.org/pdf/1101.4351
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群