摘要翻译:
贝叶斯网络的基本任务之一是从数据中学习网络结构。由于BN学习问题是NP难问题,所以标准的解决方法是启发式搜索。许多方法已经被提出用于这项任务,但只有非常少的数量超过贪婪爬山与禁忌表的基线;此外,许多提出的算法相当复杂,难以实现。在本文中,我们提出了一个非常简单和易于实现的方法来解决这个问题。我们的方法是基于一个众所周知的事实,即可以非常有效地找到与给定节点排序一致的最佳网络(有界度)。因此,我们不是在结构空间上进行搜索,而是在有序空间上进行搜索,为每个有序选择与其一致的最佳网络。这种搜索空间小得多,进行更多的全局搜索步骤,具有较低的分支因子,并避免了代价高昂的无循环性检查。我们给出了该算法在合成数据集和真实数据集上的结果,评估了所找到的网络的得分和运行时间。我们表明,基于排序的搜索优于标准基线,并与最近更难实现的算法竞争。
---
英文标题:
《Ordering-Based Search: A Simple and Effective Algorithm for Learning
Bayesian Networks》
---
作者:
Marc Teyssier, Daphne Koller
---
最新提交年份:
2012
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Machine Learning
机器学习
分类描述:Papers on all aspects of machine learning research (supervised, unsupervised, reinforcement learning, bandit problems, and so on) including also robustness, explanation, fairness, and methodology. cs.LG is also an appropriate primary category for applications of machine learning methods.
关于机器学习研究的所有方面的论文(有监督的,无监督的,强化学习,强盗问题,等等),包括健壮性,解释性,公平性和方法论。对于机器学习方法的应用,CS.LG也是一个合适的主要类别。
--
一级分类:Computer Science 计算机科学
二级分类:Artificial Intelligence
人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
一级分类:Statistics 统计学
二级分类:Machine Learning 机器学习
分类描述:Covers machine learning papers (supervised, unsupervised, semi-supervised learning, graphical models, reinforcement learning, bandits, high dimensional inference, etc.) with a statistical or theoretical grounding
覆盖机器学习论文(监督,无监督,半监督学习,图形模型,强化学习,强盗,高维推理等)与统计或理论基础
--
---
英文摘要:
One of the basic tasks for Bayesian networks (BNs) is that of learning a network structure from data. The BN-learning problem is NP-hard, so the standard solution is heuristic search. Many approaches have been proposed for this task, but only a very small number outperform the baseline of greedy hill-climbing with tabu lists; moreover, many of the proposed algorithms are quite complex and hard to implement. In this paper, we propose a very simple and easy-to-implement method for addressing this task. Our approach is based on the well-known fact that the best network (of bounded in-degree) consistent with a given node ordering can be found very efficiently. We therefore propose a search not over the space of structures, but over the space of orderings, selecting for each ordering the best network consistent with it. This search space is much smaller, makes more global search steps, has a lower branching factor, and avoids costly acyclicity checks. We present results for this algorithm on both synthetic and real data sets, evaluating both the score of the network found and in the running time. We show that ordering-based search outperforms the standard baseline, and is competitive with recent algorithms that are much harder to implement.
---
PDF链接:
https://arxiv.org/pdf/1207.1429