摘要翻译:
设X是具有代数群G作用的代数簇。假设X有一个完全例外的束集,并且这些束集在群的作用下是不变的。我们构造了X上G-等变相干束的有界导范畴的半守恒分解,它等价于群的扭曲表示的导范畴。如果群在零特征的代数闭域上是有限的或约化的,这就给出了导出的等变范畴中的一个完全例外集合。我们将我们的结果应用于特定的变体,如射影空间、二次曲面、Grassmanians曲面和Del Pezzo曲面。
---
英文标题:
《Semiorthogonal decompositions of derived categories of equivariant
coherent sheaves》
---
作者:
Alexei Elagin
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
Let X be an algebraic variety with an action of an algebraic group G. Suppose X has a full exceptional collection of sheaves, and these sheaves are invariant under the action of the group. We construct a semiorthogonal decomposition of bounded derived category of G-equivariant coherent sheaves on X into components, equivalent to derived categories of twisted representations of the group. If the group is finite or reductive over the algebraically closed field of zero characteristic, this gives a full exceptional collection in the derived equivariant category. We apply our results to particular varieties such as projective spaces, quadrics, Grassmanians and Del Pezzo surfaces.
---
PDF链接:
https://arxiv.org/pdf/0809.5166