摘要翻译:
最近的危机和随之而来的简化,使世界各地的大多数衍生品业务承受了相当大的压力。我们认为,传统的建模技术必须扩展到包括产品设计。我们提出了一个量化的框架来创造产品,从投资者的角度来看,这些产品满足了最优的挑战,同时保持相对简单和透明。
---
英文标题:
《Learning, investments and derivatives》
---
作者:
Andrei N. Soklakov
---
最新提交年份:
2011
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:General Finance 一般财务
分类描述:Development of general quantitative methodologies with applications in finance
通用定量方法的发展及其在金融中的应用
--
一级分类:Computer Science 计算机科学
二级分类:Machine Learning
机器学习
分类描述:Papers on all aspects of machine learning research (supervised, unsupervised, reinforcement learning, bandit problems, and so on) including also robustness, explanation, fairness, and methodology. cs.LG is also an appropriate primary category for applications of machine learning methods.
关于机器学习研究的所有方面的论文(有监督的,无监督的,强化学习,强盗问题,等等),包括健壮性,解释性,公平性和方法论。对于机器学习方法的应用,CS.LG也是一个合适的主要类别。
--
---
英文摘要:
The recent crisis and the following flight to simplicity put most derivative businesses around the world under considerable pressure. We argue that the traditional modeling techniques must be extended to include product design. We propose a quantitative framework for creating products which meet the challenge of being optimal from the investors point of view while remaining relatively simple and transparent.
---
PDF链接:
https://arxiv.org/pdf/1106.2882