摘要翻译:
我们证明了秩三紧Hermitian对称空间的割簇在其最小齐次嵌入中是正规的,具有有理奇点。我们证明它们的理想是在三度产生的--除了一个例外,在$\pp{63}$中的$21$维旋量变化的割线变化,我们证明理想是在四度产生的。我们还讨论了紧Hermitian对称空间割线变体的坐标环。
---
英文标题:
《On secant varieties of Compact Hermitian Symmetric Spaces》
---
作者:
J.M. Landsberg and Jerzy Weyman
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Representation Theory 表象理论
分类描述:Linear representations of algebras and groups, Lie theory, associative algebras, multilinear algebra
代数和群的线性表示,李理论,结合代数,多重线性代数
--
---
英文摘要:
We show that the secant varieties of rank three compact Hermitian symmetric spaces in their minimal homogeneous embeddings are normal, with rational singularities. We show that their ideals are generated in degree three - with one exception, the secant variety of the $21$-dimensional spinor variety in $\pp{63}$ where we show the ideal is generated in degree four. We also discuss the coordinate rings of secant varieties of compact Hermitian symmetric spaces.
---
PDF链接:
https://arxiv.org/pdf/0802.3402