摘要翻译:
设$N$为正整数,设$f$为$\gamma_0(N)$上权重为2的新形式。在早期与K.Ribet和W.Stein的合作中,我们引入了与新形式$F$相关的商阿贝尔变体$A_F$的模数和同余数的概念。这些不变量类似于分别与椭圆曲线相关的模度和同余素数的概念。我们证明了如果$P$是一个素数,使得包含$F$零化子理想的特征$P$的Hecke代数的每个极大理想满足重数1,则模数和同余数具有相同的$P$-adic值。
---
英文标题:
《The Modular number, Congruence number, and Multiplicity One》
---
作者:
Amod Agashe
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Number Theory 数论
分类描述:Prime numbers, diophantine equations, analytic number theory, algebraic number theory, arithmetic geometry, Galois theory
素数,丢番图方程,解析数论,代数数论,算术几何,伽罗瓦理论
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
Let $N$ be a positive integer and let $f$ be a newform of weight 2 on $\Gamma_0(N)$. In earlier joint work with K. Ribet and W. Stein, we introduced the notions of the modular number and the congruence number of the quotient abelian variety $A_f$ of $J_0(N)$ associated to the newform $f$. These invariants are analogs of the notions of the modular degree and congruence primes respectively associated to elliptic curves. We show that if $p$ is a prime such that every maximal ideal of the Hecke algebra of characteristic $p$ that contains the annihilator ideal of $f$ satisfies multiplicity one, then the modular number and the congruence number have the same $p$-adic valuation.
---
PDF链接:
https://arxiv.org/pdf/0810.5176