摘要翻译:
本文给出了生物学中选民模型统计的一个有趣的实验例子。在最近对小鼠尾皮的研究中,增殖细胞被限制在一个二维层中,我们发现细胞增殖和分化是根据一个简单的细胞分裂随机模型进行的,该模型只涉及一种增殖细胞,这种增殖细胞可以对称和不对称地分裂。奇怪的是,这些简单的规则提供了细胞种群动态的极好预测,而不必解决它们的空间分布。然而,如果通过允许细胞随机扩散来解决细胞的空间行为,人们就会推断出密度波动破坏了组织的汇合,暗示了物理系统中某种隐藏程度的空间调节。为了推断空间调控的机制,我们考虑了一个保留总体种群动态的二维细胞命运模型。通过用“选民”模型的三物种变异来识别由此产生的行为,我们预测基底层的增殖细胞应该聚集。对细胞增殖活性染色的经验相关性的分析证实,预期的聚集行为在自然界中确实存在。
---
英文标题:
《Mechanism of murine epidermal maintenance: Cell division and the Voter
  Model》
---
作者:
Allon M. Klein, David P. Doupe, Philip H. Jones and Benjamin D. Simons
---
最新提交年份:
2007
---
分类信息:
一级分类:Physics        物理学
二级分类:Biological Physics        生物物理学
分类描述:Molecular biophysics, cellular biophysics, neurological biophysics, membrane biophysics, single-molecule biophysics, ecological biophysics, quantum phenomena in biological systems (quantum biophysics), theoretical biophysics, molecular dynamics/modeling and simulation, game theory, biomechanics, bioinformatics, microorganisms, virology, evolution, biophysical methods.
分子生物物理、细胞生物物理、神经生物物理、膜生物物理、单分子生物物理、生态生物物理、生物系统中的量子现象(量子生物物理)、理论生物物理、分子动力学/建模与模拟、博弈论、生物力学、生物信息学、微生物、病毒学、进化论、生物物理方法。
--
一级分类:Physics        物理学
二级分类:Statistical Mechanics        统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
一级分类:Quantitative Biology        数量生物学
二级分类:Cell Behavior        细胞行为
分类描述:Cell-cell signaling and interaction; morphogenesis and development; apoptosis; bacterial conjugation; viral-host interaction; immunology
细胞-细胞信号传导及相互作用;形态发生和发育;细胞凋亡;细菌接合;病毒-宿主相互作用;免疫学
--
---
英文摘要:
  This paper presents an interesting experimental example of voter-model statistics in biology. In recent work on mouse tail-skin, where proliferating cells are confined to a two-dimensional layer, we showed that cells proliferate and differentiate according to a simple stochastic model of cell division involving just one type of proliferating cell that may divide both symmetrically and asymmetrically. Curiously, these simple rules provide excellent predictions of the cell population dynamics without having to address their spatial distribution. Yet, if the spatial behaviour of cells is addressed by allowing cells to diffuse at random, one deduces that density fluctuations destroy tissue confluence, implying some hidden degree of spatial regulation in the physical system. To infer the mechanism of spatial regulation, we consider a two-dimensional model of cell fate that preserves the overall population dynamics. By identifying the resulting behaviour with a three-species variation of the "Voter" model, we predict that proliferating cells in the basal layer should cluster. Analysis of empirical correlations of cells stained for proliferation activity confirms that the expected clustering behaviour is indeed seen in nature. 
---
PDF链接:
https://arxiv.org/pdf/712.0133