摘要翻译:
本文建立了一个连续时间框架下的效用模型,该模型捕获了决策者对驱动过程的漂移和波动的模糊关注。在技术层面上,分析需要与现有的连续时间建模有很大的不同,因为它不能在概率空间框架内完成。这是因为关于波动性的模糊性总是导致一组不等价的先验,也就是说,先验不同意哪些场景是可能的。
---
英文标题:
《Ambiguous Volatility, Possibility and Utility in Continuous Time》
---
作者:
Larry Epstein and Shaolin Ji
---
最新提交年份:
2013
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:General Finance 一般财务
分类描述:Development of general quantitative methodologies with applications in finance
通用定量方法的发展及其在金融中的应用
--
一级分类:Mathematics 数学
二级分类:Probability 概率
分类描述:Theory and applications of probability and stochastic processes: e.g. central limit theorems, large deviations, stochastic differential equations, models from statistical mechanics, queuing theory
概率论与随机过程的理论与应用:例如中心极限定理,大偏差,随机微分方程,统计力学模型,排队论
--
---
英文摘要:
This paper formulates a model of utility for a continuous time framework that captures the decision-maker's concern with ambiguity about both the drift and volatility of the driving process. At a technical level, the analysis requires a significant departure from existing continuous time modeling because it cannot be done within a probability space framework. This is because ambiguity about volatility leads invariably to a set of nonequivalent priors, that is, to priors that disagree about which scenarios are possible.
---
PDF链接:
https://arxiv.org/pdf/1103.1652