摘要翻译:
本文提出了一种新的语义分析方法,通过学习复杂句子和丰富事件集之间的对应关系来解决语义分析问题。我们的主要直觉是正确的对应往往发生得更频繁。我们的模型得益于一个区分相似度的概念来学习句子和事件之间的对应关系,以及一个对每个对应关系的受欢迎程度进行评分的排名机制。我们的方法可以发现一组最能描述一个句子的事件(称为宏事件)。我们在新的职业足球解说数据集上对我们的方法进行了评估。实证结果表明,我们的方法显著优于现有的模型。
---
英文标题:
《Semantic Understanding of Professional Soccer Commentaries》
---
作者:
Hannaneh Hajishirzi, Mohammad Rastegari, Ali Farhadi, Jessica K.
  Hodgins
---
最新提交年份:
2012
---
分类信息:
一级分类:Computer Science        计算机科学
二级分类:Computation and Language        计算与语言
分类描述:Covers natural language processing. Roughly includes material in ACM Subject Class I.2.7. Note that work on artificial languages (programming languages, logics, formal systems) that does not explicitly address natural-language issues broadly construed (natural-language processing, computational linguistics, speech, text retrieval, etc.) is not appropriate for this area.
涵盖自然语言处理。大致包括ACM科目I.2.7类的材料。请注意,人工语言(编程语言、逻辑学、形式系统)的工作,如果没有明确地解决广义的自然语言问题(自然语言处理、计算语言学、语音、文本检索等),就不适合这个领域。
--
一级分类:Computer Science        计算机科学
二级分类:Artificial Intelligence        
人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
---
英文摘要:
  This paper presents a novel approach to the problem of semantic parsing via learning the correspondences between complex sentences and rich sets of events. Our main intuition is that correct correspondences tend to occur more frequently. Our model benefits from a discriminative notion of similarity to learn the correspondence between sentence and an event and a ranking machinery that scores the popularity of each correspondence. Our method can discover a group of events (called macro-events) that best describes a sentence. We evaluate our method on our novel dataset of professional soccer commentaries. The empirical results show that our method significantly outperforms the state-of-theart. 
---
PDF链接:
https://arxiv.org/pdf/1210.4854