摘要翻译:
设$乘以$是两个线丛张量积的分类映射,将该映射推广到所有余维1代数圈的空间。证明了这种扩张不能存在于大于1的余维数中。
---
英文标题:
《On the non-existence of Tensor Products of Algebraic Cycles》
---
作者:
Luis E. Lopez
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Topology 代数拓扑
分类描述:Homotopy theory, homological algebra, algebraic treatments of manifolds
同伦理论,同调代数,流形的代数处理
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
Let $\otimes$ be the map which classifies the tensor product of two line bundles, an extension of this map to the space of all codimension 1 algebraic cycles is constructed. It is proved that this extension cannot exist in codimension greater than 1.
---
PDF链接:
https://arxiv.org/pdf/0811.0758