全部版块 我的主页
论坛 经济学人 二区 外文文献专区
426 0
2022-04-11
摘要翻译:
数值研究了二维二阶和四阶非线性界面生长方程及相关晶格模型的最大和最小高度分布(MAHD,MIHD)。由于局部高度分布的不对称性,MAHD和MIHD是不同的,因此,在每一类中,相关非线性项的符号决定了两条通用曲线中哪一条是MAHD和MIHD。与Edwards-Wilkinson(EW)生长相比,平均最大和最小高度比例尺为平均粗糙度。所有极端高度分布,包括EW高度分布,都有不能用广义Gumbel分布拟合的尾部。
---
英文标题:
《Maximal and minimal height distributions of fluctuating interfaces》
---
作者:
T. J. Oliveira and F. D. A. Aarao Reis
---
最新提交年份:
2007
---
分类信息:

一级分类:Physics        物理学
二级分类:Statistical Mechanics        统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--

---
英文摘要:
  We study numerically the maximal and minimal height distributions (MAHD, MIHD) of the nonlinear interface growth equations of second and fourth order and of related lattice models in two dimensions. MAHD and MIHD are different due to the asymmetry of the local height distribution, so that, in each class, the sign of the relevant nonlinear term determines which one of two universal curves is the MAHD and the MIHD. The average maximal and minimal heights scale as the average roughness, in contrast to Edwards-Wilkinson (EW) growth. All extreme height distributions, including the EW ones, have tails that cannot be fit by generalized Gumbel distributions.
---
PDF链接:
https://arxiv.org/pdf/711.1849
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群