摘要翻译:
Chambert-Loir对a上的abelian变体a的闭d维子变体X和正则度量化线丛L在与a相关的Berkovich解析空间上引入了关于地面场离散估值的测度$C_1(L_X)^{\wedge d}$。本文利用凸几何给出了这些规范测度的显式描述。我们使用了与a的雷诺扩张和Mumford构造有关的热带化的一个推广。所得结果对小点的等分布有一定的应用。
---
英文标题:
《Non-archimedean canonical measures on abelian varieties》
---
作者:
Walter Gubler
---
最新提交年份:
2009
---
分类信息:
一级分类:Mathematics 数学
二级分类:Number Theory 数论
分类描述:Prime numbers, diophantine equations, analytic number theory, algebraic number theory, arithmetic geometry, Galois theory
素数,丢番图方程,解析数论,代数数论,算术几何,伽罗瓦理论
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
For a closed d-dimensional subvariety X of an abelian variety A and a canonically metrized line bundle L on A, Chambert-Loir has introduced measures $c_1(L|_X)^{\wedge d}$ on the Berkovich analytic space associated to A with respect to the discrete valuation of the ground field. In this paper, we give an explicit description of these canonical measures in terms of convex geometry. We use a generalization of the tropicalization related to the Raynaud extension of A and Mumford's construction. The results have applications to the equidistribution of small points.
---
PDF链接:
https://arxiv.org/pdf/0801.4503