摘要翻译:
随着视觉艺术中神经风格转换的成功,音乐风格转换的努力在最近出现了一种上升的趋势。然而,从科学的角度来看,“音乐风格”还不是一个定义明确的概念。难点在于音乐表现的内在多层次、多模态特征(这与图像表现有很大不同)。因此,基于他们对“音乐风格”的解释,目前在“音乐风格转移”范畴下的研究实际上是在解决完全不同的问题,而这些问题属于计算机音乐的多种子领域。另外,一种单纯的端到端的方法,即直接采用图像风格转换的方法来一次性处理所有层次的音乐表现,结果很差。因此,通过将音乐风格转换分解为音色风格转换、演奏风格转换和作曲风格转换的精确概念,并将音乐风格转换的不同方面与现有的计算机音乐研究的子领域联系起来,我们迫切地提出了一个更加科学可行的音乐风格转换定义。此外,我们还借鉴了一些深层生成模型,特别是使用无监督学习和解纠缠技术的模型,讨论了目前音乐风格建模的局限性和未来的发展方向。
---
英文标题:
《Music Style Transfer: A Position Paper》
---
作者:
Shuqi Dai and Zheng Zhang and Gus G. Xia
---
最新提交年份:
2018
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Sound 声音
分类描述:Covers all aspects of computing with sound, and sound as an information channel. Includes models of sound, analysis and synthesis, audio user interfaces, sonification of data, computer music, and sound signal processing. Includes ACM Subject Class H.5.5, and intersects with H.1.2, H.5.1, H.5.2, I.2.7, I.5.4, I.6.3, J.5, K.4.2.
涵盖了声音计算的各个方面,以及声音作为一种信息通道。包括声音模型、分析和合成、音频用户界面、数据的可听化、计算机音乐和声音信号处理。包括ACM学科类H.5.5,并与H.1.2、H.5.1、H.5.2、I.2.7、I.5.4、I.6.3、J.5、K.4.2交叉。
--
一级分类:Electrical Engineering and Systems Science 电气工程与系统科学
二级分类:Audio and Speech Processing 音频和语音处理
分类描述:Theory and methods for processing signals representing audio, speech, and language, and their applications. This includes analysis, synthesis, enhancement, transformation, classification and interpretation of such signals as well as the design, development, and evaluation of associated signal processing systems. Machine learning and pattern analysis applied to any of the above areas is also welcome. Specific topics of interest include: auditory modeling and hearing aids; acoustic beamforming and source localization; classification of acoustic scenes; speaker separation; active noise control and echo cancellation; enhancement; de-reverberation; bioacoustics; music signals analysis, synthesis and modification; music information retrieval; audio for multimedia and joint audio-video processing; spoken and written language modeling, segmentation, tagging, parsing, understanding, and translation; text mining; speech production, perception, and psychoacoustics; speech analysis, synthesis, and perceptual modeling and coding; robust speech recognition; speaker recognition and characterization; deep learning, online learning, and graphical models applied to speech, audio, and language signals; and implementation aspects ranging from system architecture to fast algorithms.
处理代表音频、语音和语言的信号的理论和方法及其应用。这包括分析、合成、增强、转换、分类和解释这些信号,以及相关信号处理系统的设计、开发和评估。机器学习和模式分析应用于上述任何领域也是受欢迎的。感兴趣的具体主题包括:听觉建模和助听器;声波束形成与声源定位;声场景分类;说话人分离;有源噪声控制和回声消除;增强;去混响;生物声学;音乐信号的分析、合成与修饰;音乐信息检索;多媒体音频和联合音视频处理;口语和书面语建模、切分、标注、句法分析、理解和翻译;文本挖掘;言语产生、感知和心理声学;语音分析、合成、感知建模和编码;鲁棒语音识别;说话人识别与特征描述;应用于语音、音频和语言信号的
深度学习、在线学习和图形模型;以及从系统架构到快速算法的实现方面。
--
---
英文摘要:
Led by the success of neural style transfer on visual arts, there has been a rising trend very recently in the effort of music style transfer. However, "music style" is not yet a well-defined concept from a scientific point of view. The difficulty lies in the intrinsic multi-level and multi-modal character of music representation (which is very different from image representation). As a result, depending on their interpretation of "music style", current studies under the category of "music style transfer", are actually solving completely different problems that belong to a variety of sub-fields of Computer Music. Also, a vanilla end-to-end approach, which aims at dealing with all levels of music representation at once by directly adopting the method of image style transfer, leads to poor results. Thus, we vitally propose a more scientifically-viable definition of music style transfer by breaking it down into precise concepts of timbre style transfer, performance style transfer and composition style transfer, as well as to connect different aspects of music style transfer with existing well-established sub-fields of computer music studies. In addition, we discuss the current limitations of music style modeling and its future directions by drawing spirit from some deep generative models, especially the ones using unsupervised learning and disentanglement techniques.
---
PDF链接:
https://arxiv.org/pdf/1803.06841