英文标题:
《Invidious Comparisons: Ranking and Selection as Compound Decisions》
---
作者:
Jiaying Gu and Roger Koenker
---
最新提交年份:
2021
---
英文摘要:
There is an innate human tendency, one might call it the \"league table mentality,\" to construct rankings. Schools, hospitals, sports teams, movies, and myriad other objects are ranked even though their inherent multi-dimensionality would suggest that -- at best -- only partial orderings were possible. We consider a large class of elementary ranking problems in which we observe noisy, scalar measurements of merit for $n$ objects of potentially heterogeneous precision and are asked to select a group of the objects that are \"most meritorious.\" The problem is naturally formulated in the compound decision framework of Robbins\'s (1956) empirical Bayes theory, but it also exhibits close connections to the recent literature on multiple testing. The nonparametric maximum likelihood estimator for mixture models (Kiefer and Wolfowitz (1956)) is employed to construct optimal ranking and selection rules. Performance of the rules is evaluated in simulations and an application to ranking U.S kidney dialysis centers.
---
中文摘要:
人类有一种天生的倾向,可以称之为“排行榜心态”,即构建排名。学校、医院、运动队、电影和无数其他物体都会被排序,尽管它们固有的多维性表明——充其量——只有部分排序是可能的。我们考虑了一大类基本排序问题,在这些问题中,我们观察到噪音、标量的价值测量值,这些测量值为$n$具有潜在异质精度的对象,并被要求选择一组“最有价值”的对象这个问题自然是在罗宾斯(1956)的经验贝叶斯理论的复合决策框架中形成的,但它也与最近关于多重测试的文献密切相关。利用混合模型的非参数极大似然估计(Kiefer and Wolfowitz(1956))构造最优排序和选择规则。这些规则的性能在模拟中进行了评估,并应用于美国肾透析中心的排名。
---
分类信息:
一级分类:Economics 经济学
二级分类:Econometrics 计量经济学
分类描述:Econometric Theory, Micro-Econometrics, Macro-Econometrics, Empirical Content of Economic Relations discovered via New Methods, Methodological Aspects of the Application of Statistical Inference to Economic Data.
计量经济学理论,微观计量经济学,宏观计量经济学,通过新方法发现的经济关系的实证内容,统计推论应用于经济数据的方法论方面。
--
一级分类:Statistics 统计学
二级分类:Methodology 方法论
分类描述:Design, Surveys, Model Selection, Multiple Testing, Multivariate Methods, Signal and Image Processing, Time Series, Smoothing, Spatial Statistics, Survival Analysis, Nonparametric and Semiparametric Methods
设计,调查,模型选择,多重检验,多元方法,信号和图像处理,时间序列,平滑,空间统计,生存分析,非参数和半参数方法
--
---
PDF下载:
-->