英文标题:
《Optimal Dynamic Portfolio with Mean-CVaR Criterion》
---
作者:
Jing Li and Mingxin Xu
---
最新提交年份:
2013
---
英文摘要:
Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR) are popular risk measures from academic, industrial and regulatory perspectives. The problem of minimizing CVaR is theoretically known to be of Neyman-Pearson type binary solution. We add a constraint on expected return to investigate the Mean-CVaR portfolio selection problem in a dynamic setting: the investor is faced with a Markowitz type of risk reward problem at final horizon where variance as a measure of risk is replaced by CVaR. Based on the complete market assumption, we give an analytical solution in general. The novelty of our solution is that it is no longer Neyman-Pearson type where the final optimal portfolio takes only two values. Instead, in the case where the portfolio value is required to be bounded from above, the optimal solution takes three values; while in the case where there is no upper bound, the optimal investment portfolio does not exist, though a three-level portfolio still provides a sub-optimal solution.
---
中文摘要:
从学术、行业和监管角度来看,风险价值(VaR)和条件风险价值(CVaR)是流行的风险度量。从理论上讲,最小化CVaR的问题是Neyman-Pearson型二元解。我们在预期收益上增加了一个约束,以研究动态环境下的平均CVaR投资组合选择问题:投资者在最终期限内面临一个Markowitz类型的风险回报问题,其中方差作为风险度量被CVaR取代。基于完全市场假设,我们给出了一般的解析解。我们的解决方案的新颖之处在于,它不再是内曼-皮尔逊类型,最终的最优投资组合只需要两个值。相反,在要求投资组合的价值从上方有界的情况下,最优解取三个值;在没有上限的情况下,最优投资组合不存在,尽管三级投资组合仍然提供次优解。
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Portfolio Management 项目组合管理
分类描述:Security selection and optimization, capital allocation, investment strategies and performance measurement
证券选择与优化、资本配置、投资策略与绩效评价
--
一级分类:Quantitative Finance 数量金融学
二级分类:Risk Management 风险管理
分类描述:Measurement and management of financial risks in trading, banking, insurance, corporate and other applications
衡量和管理贸易、银行、保险、企业和其他应用中的金融风险
--
---
PDF下载:
-->