英文标题:
《Multivariate stochastic volatility modelling using Wishart
autoregressive processes》
---
作者:
K. Triantafyllopoulos
---
最新提交年份:
2013
---
英文摘要:
A new multivariate stochastic volatility estimation procedure for financial time series is proposed. A Wishart autoregressive process is considered for the volatility precision covariance matrix, for the estimation of which a two step procedure is adopted. The first step is the conditional inference on the autoregressive parameters and the second step is the unconditional inference, based on a Newton-Raphson iterative algorithm. The proposed methodology, which is mostly Bayesian, is suitable for medium dimensional data and it bridges the gap between closed-form estimation and simulation-based estimation algorithms. An example, consisting of foreign exchange rates data, illustrates the proposed methodology.
---
中文摘要:
提出了一种新的金融时间序列多元随机波动率估计方法。对于波动率精度协方差矩阵,考虑了Wishart自回归过程,其估计采用了两步程序。第一步是对自回归参数的条件推理,第二步是基于牛顿-拉斐逊迭代算法的无条件推理。所提出的方法主要是贝叶斯方法,适用于中维数据,它弥补了封闭形式估计和基于仿真的估计算法之间的差距。一个由汇率数据组成的例子说明了所提出的方法。
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Computational Finance 计算金融学
分类描述:Computational methods, including Monte Carlo, PDE, lattice and other numerical methods with applications to financial modeling
计算方法,包括蒙特卡罗,偏微分方程,格子和其他数值方法,并应用于金融建模
--
一级分类:Statistics 统计学
二级分类:Methodology 方法论
分类描述:Design, Surveys, Model Selection, Multiple Testing, Multivariate Methods, Signal and Image Processing, Time Series, Smoothing, Spatial Statistics, Survival Analysis, Nonparametric and Semiparametric Methods
设计,调查,模型选择,多重检验,多元方法,信号和图像处理,时间序列,平滑,空间统计,生存分析,非参数和半参数方法
--
---
PDF下载:
-->