英文标题:
《An inverse optimal stopping problem for diffusion processes》
---
作者:
Thomas Kruse and Philipp Strack
---
最新提交年份:
2017
---
英文摘要:
Let $X$ be a one-dimensional diffusion and let $g\\colon[0,T]\\times\\mathbb{R}\\to\\mathbb{R}$ be a payoff function depending on time and the value of $X$. The paper analyzes the inverse optimal stopping problem of finding a time-dependent function $\\pi:[0,T]\\to\\mathbb{R}$ such that a given stopping time $\\tau^{\\star}$ is a solution of the stopping problem $\\sup_{\\tau}\\mathbb{E}\\left[g(\\tau,X_{\\tau})+\\pi(\\tau)\\right]\\,.$ Under regularity and monotonicity conditions, there exists a solution $\\pi$ if and only if $\\tau^{\\star}$ is the first time when $X$ exceeds a time-dependent barrier $b$, i.e. $\\tau^{\\star}=\\inf\\left\\{ t\\ge0\\,|\\,X_{t}\\ge b(t)\\right\\} \\,.$ We prove uniqueness of the solution $\\pi$ and derive a closed form representation. The representation is based on an auxiliary process which is a version of the original diffusion $X$ reflected at $b$ towards the continuation region. The results lead to a new integral equation characterizing the stopping boundary $b$ of the stopping problem $\\sup_{\\tau}\\mathbb{E}\\left[g(\\tau,X_{\\tau})\\right]$.
---
中文摘要:
设$X$为一维扩散,并设$g\\colon[0,T]\\times\\mathbb{R}\\to\\mathbb{R}$为一个支付函数,具体取决于时间和$X$的值。本文分析了求含时函数$\\pi:[0,T]\\to\\mathbb{R}$的逆最优停止问题,使得给定的停止时间$\\tau^{\\star}$是停止问题$\\sup_{\\tau}\\mathbb{E}\\left[g(\\tau,X_{\\tau})+\\pi(\\tau\\right]\\,.$在正则性和单调性条件下,存在一个解$\\pi$当且仅当$\\tau^{\\star}$是第一次当$X$超过一个与时间有关的势垒$b$时,即$\\tau^{\\star}=\\inf\\left\\{t\\ge0\\,|X{t}\\ge b(t)\\ right\\\\,.$我们证明了解$\\pi$的唯一性,并导出了一个闭式表示。该表示基于一个辅助过程,该过程是原始扩散$X$的一个版本,反映为朝向延续区域的$b$。结果导出了一个新的积分方程,它刻画了停止问题$\\sup_{\\tau}\\mathbb{E}\\left[g(\\tau,X_{\\tau})\\right]$的停止边界$b$。
---
分类信息:
一级分类:Mathematics 数学
二级分类:Optimization and Control 优化与控制
分类描述:Operations research, linear programming, control theory, systems theory, optimal control, game theory
运筹学,线性规划,控制论,系统论,最优控制,博弈论
--
一级分类:Mathematics 数学
二级分类:Probability 概率
分类描述:Theory and applications of probability and stochastic processes: e.g. central limit theorems, large deviations, stochastic differential equations, models from statistical mechanics, queuing theory
概率论与随机过程的理论与应用:例如中心极限定理,大偏差,随机微分方程,统计力学模型,排队论
--
一级分类:Quantitative Finance 数量金融学
二级分类:Economics 经济学
分类描述:q-fin.EC is an alias for econ.GN. Economics, including micro and macro economics, international economics, theory of the firm, labor economics, and other economic topics outside finance
q-fin.ec是econ.gn的别名。经济学,包括微观和宏观经济学、国际经济学、企业理论、劳动经济学和其他金融以外的经济专题
--
---
PDF下载:
-->