英文标题:
《Non-linear filtering and optimal investment under partial information
for stochastic volatility models》
---
作者:
Dalia Ibrahim, Fr\\\'ed\\\'eric Abergel (MAS, FiQuant)
---
最新提交年份:
2015
---
英文摘要:
This paper studies the question of filtering and maximizing terminal wealth from expected utility in a partially information stochastic volatility models. The special features is that the only information available to the investor is the one generated by the asset prices, and the unobservable processes will be modeled by a stochastic differential equations. Using the change of measure techniques, the partial observation context can be transformed into a full information context such that coefficients depend only on past history of observed prices (filters processes). Adapting the stochastic non-linear filtering, we show that under some assumptions on the model coefficients, the estimation of the filters depend on a priorimodels for the trend and the stochastic volatility. Moreover, these filters satisfy a stochastic partial differential equations named \"Kushner-Stratonovich equations\". Using the martingale duality approach in this partially observed incomplete model, we can characterize the value function and the optimal portfolio. The main result here is that the dual value function associated to the martingale approach can be expressed, via the dynamic programmingapproach, in terms of the solution to a semilinear partial differential equation. We illustrate our results with some examples of stochastic volatility models popular in the financial literature.
---
中文摘要:
本文研究了部分信息随机波动率模型中从期望效用中筛选和最大化终端财富的问题。其特点是,投资者可以获得的唯一信息是资产价格产生的信息,不可观测的过程将由随机微分方程建模。利用测量技术的变化,可以将部分观测环境转换为完全信息环境,使系数仅取决于观测价格的过去历史(过滤过程)。采用随机非线性滤波,我们证明了在模型系数的某些假设下,滤波器的估计依赖于趋势和随机波动的先验模型。此外,这些滤波器满足一个名为“Kushner-Stratonovich方程”的随机偏微分方程。在这个部分观测的不完全模型中,利用鞅对偶方法,我们可以刻画价值函数和最优投资组合。这里的主要结果是,与鞅方法相关联的对偶值函数可以通过动态规划方法表示为半线性偏微分方程的解。我们用金融文献中流行的随机波动率模型的一些例子来说明我们的结果。
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Portfolio Management 项目组合管理
分类描述:Security selection and optimization, capital allocation, investment strategies and performance measurement
证券选择与优化、资本配置、投资策略与绩效评价
--
一级分类:Quantitative Finance 数量金融学
二级分类:Mathematical Finance 数学金融学
分类描述:Mathematical and analytical methods of finance, including stochastic, probabilistic and functional analysis, algebraic, geometric and other methods
金融的数学和分析方法,包括随机、概率和泛函分析、代数、几何和其他方法
--
---
PDF下载:
-->