英文标题:
《The Levy-Ito Decomposition theorem》
---
作者:
J.L. Bretagnolle, P. Ouwehand
---
最新提交年份:
2015
---
英文摘要:
This a free translation with additional explanations of {\\em Processus \\`a Accroissement Independants Chapitre I: La D\\\'ecomposition de Paul L\\\'evy}, by J.L. Bretagnolle, in {\\em Ecole d\'Et\\\'e de Probabilit\\\'es}, Lecture Notes in Mathematics 307, Springer 1973. The L\\\'evy-Khintchine representation of infinitely divisible distributions is obtained as a by-product. As this proof makes use of martingale methods, it is pedagogically more suitable for students of financial mathematics than some other approaches. It is hoped that the end notes will also help to make the proof more accessible to this audience.
---
中文摘要:
这是J.L.Bretagnolle在{em Ecole D\'Et\'e de Probabilit\'es}中对{em Processus\\\'a Accroission Independent Chapitre I:La D\'ecomposition de Paul L\'evy}的意译,另附解释,数学课堂讲稿307,Springer 1973。无穷可除分布的LSevy-Khintchine表示作为副产品得到。由于该证明使用了鞅方法,因此从教学角度来看,它比其他方法更适合金融数学专业的学生。希望最后的笔记也将有助于让听众更容易获得证据。
---
分类信息:
一级分类:Mathematics 数学
二级分类:Probability 概率
分类描述:Theory and applications of probability and stochastic processes: e.g. central limit theorems, large deviations, stochastic differential equations, models from statistical mechanics, queuing theory
概率论与随机过程的理论与应用:例如中心极限定理,大偏差,随机微分方程,统计力学模型,排队论
--
一级分类:Quantitative Finance 数量金融学
二级分类:General Finance 一般财务
分类描述:Development of general quantitative methodologies with applications in finance
通用定量方法的发展及其在金融中的应用
--
---
PDF下载:
-->