英文标题:
《Exponential functionals of Levy processes and variable annuity
  guaranteed benefits》
---
作者:
Runhuan Feng, Alexey Kuznetsov, Fenghao Yang
---
最新提交年份:
2016
---
英文摘要:
  Exponential functionals of Brownian motion have been extensively studied in financial and insurance mathematics due to their broad applications, for example, in the pricing of Asian options. The Black-Scholes model is appealing because of mathematical tractability, yet empirical evidence shows that geometric Brownian motion does not adequately capture features of market equity returns. One popular alternative for modeling equity returns consists in replacing the geometric Brownian motion by an exponential of a Levy process. In this paper we use this latter model to study variable annuity guaranteed benefits and to compute explicitly the distribution of certain exponential functionals. 
---
中文摘要:
布朗运动的指数泛函在金融和保险数学中有着广泛的应用,例如在亚式期权定价中。布莱克-斯科尔斯模型因其数学可处理性而具有吸引力,但经验证据表明,几何布朗运动并不能充分捕捉市场股票收益的特征。一种流行的股票收益建模方法是用利维过程的指数代替几何布朗运动。在本文中,我们使用后一种模型来研究可变年金保证收益,并显式计算某些指数函数的分布。
---
分类信息:
一级分类:Quantitative Finance        数量金融学
二级分类:Pricing of Securities        证券定价
分类描述:Valuation and hedging of financial securities, their derivatives, and structured products
金融证券及其衍生产品和结构化产品的估值和套期保值
--
一级分类:Mathematics        数学
二级分类:Probability        概率
分类描述:Theory and applications of probability and stochastic processes: e.g. central limit theorems, large deviations, stochastic differential equations, models from statistical mechanics, queuing theory
概率论与随机过程的理论与应用:例如中心极限定理,大偏差,随机微分方程,统计力学模型,排队论
--
---
PDF下载:
-->