英文标题:
《On occupation times in the red of L\\\'evy risk models》
---
作者:
David Landriault, Bin Li and Mohamed Amine Lkabous
---
最新提交年份:
2019
---
英文摘要:
  In this paper, we obtain analytical expression for the distribution of the occupation time in the red (below level $0$) up to an (independent) exponential horizon for spectrally negative L\\\'{e}vy risk processes and refracted spectrally negative L\\\'{e}vy risk processes. This result improves the existing literature in which only the Laplace transforms are known. Due to the close connection between occupation time and many other quantities, we provide a few applications of our results including future drawdown, inverse occupation time, Parisian ruin with exponential delay, and the last time at running maximum. By a further Laplace inversion to our results, we obtain the distribution of the occupation time up to a finite time horizon for refracted Brownian motion risk process and refracted Cram\\\'{e}r-Lundberg risk model with exponential claims. 
---
中文摘要:
本文得到了光谱负L{e}vy风险过程和折射光谱负L{e}vy风险过程在(独立)指数范围内的红色(低于0美元)占用时间分布的解析表达式。这一结果改进了现有文献中只知道拉普拉斯变换的情况。由于占用时间与许多其他量之间的密切联系,我们提供了我们的结果的一些应用,包括未来水位下降、反向占用时间、指数延迟的巴黎破产和最后一次运行最大时间。通过对我们的结果进一步的拉普拉斯反演,我们得到了折射布朗运动风险过程和折射Cram{e}r-Lundberg指数索赔风险模型在有限时间范围内的占用时间分布。
---
分类信息:
一级分类:Quantitative Finance        数量金融学
二级分类:Risk Management        风险管理
分类描述:Measurement and management of financial risks in trading, banking, insurance, corporate and other applications
衡量和管理贸易、银行、保险、企业和其他应用中的金融风险
--
一级分类:Mathematics        数学
二级分类:Probability        概率
分类描述:Theory and applications of probability and stochastic processes: e.g. central limit theorems, large deviations, stochastic differential equations, models from statistical mechanics, queuing theory
概率论与随机过程的理论与应用:例如中心极限定理,大偏差,随机微分方程,统计力学模型,排队论
--
---
PDF下载:
-->