英文标题:
《Reputational Learning and Network Dynamics》
---
作者:
Simpson Zhang and Mihaela van der Schaar
---
最新提交年份:
2016
---
英文摘要:
In many real world networks agents are initially unsure of each other\'s qualities and must learn about each other over time via repeated interactions. This paper is the first to provide a methodology for studying the dynamics of such networks, taking into account that agents differ from each other, that they begin with incomplete information, and that they must learn through past experiences which connections/links to form and which to break. The network dynamics in our model vary drastically from the dynamics in models of complete information. With incomplete information and learning, agents who provide high benefits will develop high reputations and remain in the network, while agents who provide low benefits will drop in reputation and become ostracized. We show, among many other things, that the information to which agents have access and the speed at which they learn and act can have a tremendous impact on the resulting network dynamics. Using our model, we can also compute the ex ante social welfare given an arbitrary initial network, which allows us to characterize the socially optimal network structures for different sets of agents. Importantly, we show through examples that the optimal network structure depends sharply on both the initial beliefs of the agents, as well as the rate of learning by the agents. Due to the potential negative consequences of ostracism, it may be necessary to place agents with lower initial reputations at less central positions within the network.
---
中文摘要:
在许多现实世界的网络中,代理最初并不确定彼此的品质,必须通过反复的互动来了解彼此。本文首次提供了一种研究此类网络动态的方法,考虑到代理之间存在差异,它们从不完整的信息开始,并且必须通过过去的经验了解哪些连接/链接可以形成,哪些连接/链接可以断开。我们模型中的网络动态与完全信息模型中的动态有很大不同。在信息和学习不完整的情况下,提供高收益的代理将发展出高声誉并留在网络中,而提供低收益的代理将声誉下降并被排斥。我们的研究表明,除其他外,代理可以访问的信息以及他们学习和行动的速度可以对由此产生的网络动态产生巨大影响。利用我们的模型,我们还可以计算给定任意初始网络的事前社会福利,这使我们能够描述不同代理集的社会最优网络结构。重要的是,我们通过实例表明,最优网络结构在很大程度上取决于代理的初始信念以及代理的学习速率。由于排斥的潜在负面后果,可能有必要将初始声誉较低的代理人安排在网络中较不重要的位置。
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Economics 经济学
分类描述:q-fin.EC is an alias for econ.GN. Economics, including micro and macro economics, international economics, theory of the firm, labor economics, and other economic topics outside finance
q-fin.ec是econ.gn的别名。经济学,包括微观和宏观经济学、国际经济学、企业理论、劳动经济学和其他金融以外的经济专题
--
一级分类:Computer Science 计算机科学
二级分类:Computer Science and Game Theory 计算机科学与博弈论
分类描述:Covers all theoretical and applied aspects at the intersection of computer science and game theory, including work in mechanism design, learning in games (which may overlap with Learning), foundations of agent modeling in games (which may overlap with Multiagent systems), coordination, specification and formal methods for non-cooperative computational environments. The area also deals with applications of game theory to areas such as electronic commerce.
涵盖计算机科学和博弈论交叉的所有理论和应用方面,包括机制设计的工作,游戏中的学习(可能与学习重叠),游戏中的agent建模的基础(可能与多agent系统重叠),非合作计算环境的协调、规范和形式化方法。该领域还涉及博弈论在电子商务等领域的应用。
--
一级分类:Computer Science 计算机科学
二级分类:Social and Information Networks 社会和信息网络
分类描述:Covers the design, analysis, and modeling of social and information networks, including their applications for on-line information access, communication, and interaction, and their roles as datasets in the exploration of questions in these and other domains, including connections to the social and biological sciences. Analysis and modeling of such networks includes topics in ACM Subject classes F.2, G.2, G.3, H.2, and I.2; applications in computing include topics in H.3, H.4, and H.5; and applications at the interface of computing and other disciplines include topics in J.1--J.7. Papers on computer communication systems and network protocols (e.g. TCP/IP) are generally a closer fit to the Networking and Internet Architecture (cs.NI) category.
涵盖社会和信息网络的设计、分析和建模,包括它们在联机信息访问、通信和交互方面的应用,以及它们作为数据集在这些领域和其他领域的问题探索中的作用,包括与社会和生物科学的联系。这类网络的分析和建模包括ACM学科类F.2、G.2、G.3、H.2和I.2的主题;计算应用包括H.3、H.4和H.5中的主题;计算和其他学科接口的应用程序包括J.1-J.7中的主题。关于计算机通信系统和网络协议(例如TCP/IP)的论文通常更适合网络和因特网体系结构(CS.NI)类别。
--
一级分类:Physics 物理学
二级分类:Physics and Society 物理学与社会
分类描述:Structure, dynamics and collective behavior of societies and groups (human or otherwise). Quantitative analysis of social networks and other complex networks. Physics and engineering of infrastructure and systems of broad societal impact (e.g., energy grids, transportation networks).
社会和团体(人类或其他)的结构、动态和集体行为。社会网络和其他复杂网络的定量分析。具有广泛社会影响的基础设施和系统(如能源网、运输网络)的物理和工程。
--
---
PDF下载:
-->