英文标题:
《Bridging AIC and BIC: a new criterion for autoregression》
---
作者:
Jie Ding, Vahid Tarokh, Yuhong Yang
---
最新提交年份:
2016
---
英文摘要:
We introduce a new criterion to determine the order of an autoregressive model fitted to time series data. It has the benefits of the two well-known model selection techniques, the Akaike information criterion and the Bayesian information criterion. When the data is generated from a finite order autoregression, the Bayesian information criterion is known to be consistent, and so is the new criterion. When the true order is infinity or suitably high with respect to the sample size, the Akaike information criterion is known to be efficient in the sense that its prediction performance is asymptotically equivalent to the best offered by the candidate models; in this case, the new criterion behaves in a similar manner. Different from the two classical criteria, the proposed criterion adaptively achieves either consistency or efficiency depending on the underlying true model. In practice where the observed time series is given without any prior information about the model specification, the proposed order selection criterion is more flexible and robust compared with classical approaches. Numerical results are presented demonstrating the adaptivity of the proposed technique when applied to various datasets.
---
中文摘要:
我们引入了一个新的标准来确定时间序列数据的自回归模型的阶数。它具有两种著名的模型选择技术的优点,即Akaike信息准则和贝叶斯信息准则。当数据由有限阶自回归生成时,贝叶斯信息准则和新准则是一致的。当真实阶数无穷大或相对于样本大小适当高时,已知Akaike信息准则是有效的,因为其预测性能渐近等同于候选模型提供的最佳值;在这种情况下,新标准的行为方式类似。与两个经典准则不同,该准则根据底层真实模型自适应地实现一致性或效率。在实际应用中,当观测到的时间序列没有任何关于模型规格的先验信息时,与经典方法相比,所提出的顺序选择准则更灵活、更稳健。数值结果表明,该方法适用于各种数据集。
---
分类信息:
一级分类:Mathematics 数学
二级分类:Statistics Theory 统计理论
分类描述:Applied, computational and theoretical statistics: e.g. statistical inference, regression, time series, multivariate analysis, data analysis, Markov chain Monte Carlo, design of experiments, case studies
应用统计、计算统计和理论统计:例如统计推断、回归、时间序列、多元分析、
数据分析、马尔可夫链蒙特卡罗、实验设计、案例研究
--
一级分类:Quantitative Finance 数量金融学
二级分类:Economics 经济学
分类描述:q-fin.EC is an alias for econ.GN. Economics, including micro and macro economics, international economics, theory of the firm, labor economics, and other economic topics outside finance
q-fin.ec是econ.gn的别名。经济学,包括微观和宏观经济学、国际经济学、企业理论、劳动经济学和其他金融以外的经济专题
--
一级分类:Statistics 统计学
二级分类:Machine Learning
机器学习
分类描述:Covers machine learning papers (supervised, unsupervised, semi-supervised learning, graphical models, reinforcement learning, bandits, high dimensional inference, etc.) with a statistical or theoretical grounding
覆盖机器学习论文(监督,无监督,半监督学习,图形模型,强化学习,强盗,高维推理等)与统计或理论基础
--
一级分类:Statistics 统计学
二级分类:Statistics Theory 统计理论
分类描述:stat.TH is an alias for math.ST. Asymptotics, Bayesian Inference, Decision Theory, Estimation, Foundations, Inference, Testing.
Stat.Th是Math.St的别名。渐近,贝叶斯推论,决策理论,估计,基础,推论,检验。
--
---
PDF下载:
-->