英文标题:
《Optimal ETF Selection for Passive Investing》
---
作者:
David Puelz, Carlos M. Carvalho, P. Richard Hahn
---
最新提交年份:
2015
---
英文摘要:
This paper considers the problem of isolating a small number of exchange traded funds (ETFs) that suffice to capture the fundamental dimensions of variation in U.S. financial markets. First, the data is fit to a vector-valued Bayesian regression model, which is a matrix-variate generalization of the well known stochastic search variable selection (SSVS) of George and McCulloch (1993). ETF selection is then performed using the decoupled shrinkage and selection (DSS) procedure described in Hahn and Carvalho (2015), adapted in two ways: to the vector-response setting and to incorporate stochastic covariates. The selected set of ETFs is obtained under a number of different penalty and modeling choices. Optimal portfolios are constructed from selected ETFs by maximizing the Sharpe ratio posterior mean, and they are compared to the (unknown) optimal portfolio based on the full Bayesian model. We compare our selection results to popular ETF advisor Wealthfront.com. Additionally, we consider selecting ETFs by modeling a large set of mutual funds.
---
中文摘要:
本文考虑了隔离少量足以捕捉美国金融市场变化基本维度的交易所交易基金(ETF)的问题。首先,数据适合向量值贝叶斯回归模型,这是George和McCulloch(1993)著名的随机搜索变量选择(SSVS)的矩阵变量推广。然后,使用Hahn和Carvalho(2015)中描述的解耦收缩和选择(DSS)程序进行ETF选择,该程序以两种方式进行调整:适应向量响应设置和纳入随机协变量。选择的ETF集合是在多种不同的惩罚和建模选择下获得的。通过最大化夏普比率后验均值,从选定的ETF构建最优投资组合,并将其与基于完整贝叶斯模型的(未知)最优投资组合进行比较。我们将我们的选择结果与受欢迎的ETF顾问Wealthfront进行比较。通用域名格式。此外,我们考虑通过对大量共同基金建模来选择ETF。
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Statistical Finance 统计金融
分类描述:Statistical, econometric and econophysics analyses with applications to financial markets and economic data
统计、计量经济学和经济物理学分析及其在金融市场和经济数据中的应用
--
一级分类:Statistics 统计学
二级分类:Applications 应用程序
分类描述:Biology, Education, Epidemiology, Engineering, Environmental Sciences, Medical, Physical Sciences, Quality Control, Social Sciences
生物学,教育学,流行病学,工程学,环境科学,医学,物理科学,质量控制,社会科学
--
---
PDF下载:
-->