英文标题:
《Viscosity properties with singularities in a state-constrained expected
utility maximization problem》
---
作者:
Mourad Lazgham
---
最新提交年份:
2015
---
英文摘要:
We consider the value function originating from an expected utility maximization problem with finite fuel constraint and show its close relation to a nonlinear parabolic degenerated Hamilton-Jacobi-Bellman (HJB) equation with singularity. On one hand, we give a so-called verification argument based on the dynamic programming principle, which allows us to derive conditions under which a classical solution of the HJB equation coincides with our value function (provided that it is smooth enough). On the other hand, we establish a comparison principle, which allows us to characterize our value function as the unique viscosity solution of the HJB equation.
---
中文摘要:
我们考虑了源于有限燃料约束下的期望效用最大化问题的值函数,并证明了它与具有奇异性的非线性抛物退化Hamilton-Jacobi-Bellman(HJB)方程的密切关系。一方面,我们基于动态规划原理给出了一个所谓的验证论证,它允许我们推导出HJB方程的经典解与我们的值函数一致的条件(前提是它足够光滑)。另一方面,我们建立了一个比较原理,它允许我们将我们的值函数描述为HJB方程的唯一粘度解。
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Mathematical Finance 数学金融学
分类描述:Mathematical and analytical methods of finance, including stochastic, probabilistic and functional analysis, algebraic, geometric and other methods
金融的数学和分析方法,包括随机、概率和泛函分析、代数、几何和其他方法
--
---
PDF下载:
-->