英文标题:
《An asymmetric ARCH model and the non-stationarity of Clustering and
Leverage effects》
---
作者:
Xin Li and Carlos F. Tolmasky
---
最新提交年份:
2015
---
英文摘要:
We propose a new volatility model based on two stylized facts of the volatility in the stock market: clustering and leverage effect. We calibrate our model parameters, in the leading order, with 77 years Dow Jones Industrial Average data. We find in the short time scale (10 to 50 days) the future volatility is sensitive to the sign of past returns, i.e. asymmetric feedback or leverage effect. However, in the long time scale (300 to 1000 days) clustering becomes the main factor. We study non-stationary features by using moving windows and find that clustering and leverage effects display time evolutions that are rather nontrivial. The structure of our model allows us to shed light on a few surprising facts recently found by Chicheportiche and Bouchaud.
---
中文摘要:
基于股市波动的两个典型事实:集群效应和杠杆效应,我们提出了一个新的波动模型。我们用77年的道琼斯工业平均指数数据按领先顺序校准了模型参数。我们发现,在短时间尺度(10到50天)内,未来波动率对过去收益的迹象非常敏感,即不对称反馈或杠杆效应。然而,在长时间尺度(300到1000天)中,聚类成为主要因素。我们通过使用移动窗口来研究非平稳特征,发现聚类和杠杆效应显示的时间演化相当平凡。我们模型的结构使我们能够阐明奇切帕蒂切和布沙德最近发现的一些令人惊讶的事实。
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Statistical Finance 统计金融
分类描述:Statistical, econometric and econophysics analyses with applications to financial markets and economic data
统计、计量经济学和经济物理学分析及其在金融市场和经济数据中的应用
--
一级分类:Quantitative Finance 数量金融学
二级分类:Mathematical Finance 数学金融学
分类描述:Mathematical and analytical methods of finance, including stochastic, probabilistic and functional analysis, algebraic, geometric and other methods
金融的数学和分析方法,包括随机、概率和泛函分析、代数、几何和其他方法
--
---
PDF下载:
-->