英文标题:
《Time-inhomogeneous affine processes and affine market models》
---
作者:
Stefan Waldenberger
---
最新提交年份:
2015
---
英文摘要:
This thesis is devoted to the study of affine processes and their applications in financial mathematics. In the first part we consider the theory of time-inhomogeneous affine processes on general state spaces. We present a concise setup for time-inhomogeneous Markov processes. For stochastically continuous affine processes we show that there always exists a c\\`adl\\`ag modification. Afterwards we consider the regularity and the semimartingale property of affine processes. Contrary to the time-homogeneous case, time-inhomogeneous affine processes are in general neither regular nor semimartingales and the time-inhomogeneous case raises many new and interesting questions. Assuming that an affine process is a semimartingale, we show that even without regularity the parameter functions satisfy generalized Riccati integral equations. This generalizes an important result for time-homogeneous affine processes. We also show that stochastically continuous affine semimartingales are essentially generated by deterministic time-changes of what we call absolutely continuously affine semimartingales. These processes generalize time-homogeneous regular affine processes. In the second part we consider the class of affine LIBOR market models. We contribute to this class of models in two ways. First, we modify the original setup of the affine LIBOR market models in such a way that next to nonnegative affine processes real-valued affine processes can also be used. Numerical examples show that this allows for more flexible implied volatility surfaces. Second, we introduce the class of affine inflation market models, an extension of the affine LIBOR market models. A calibration example shows that these models perform very well in fitting market-observed prices of inflation derivatives.
---
中文摘要:
本文主要研究仿射过程及其在金融数学中的应用。在第一部分中,我们考虑一般状态空间上的时间非齐次仿射过程理论。我们提出了一个时间非齐次马尔可夫过程的简明设置。对于随机连续仿射过程,我们证明了总是存在一个c\\`adl\\`ag修正。然后我们考虑仿射过程的正则性和半鞅性质。与时间齐次情形相反,时间非齐次仿射过程一般既不是正则的也不是半鞅,时间非齐次情形提出了许多新的有趣的问题。假设仿射过程是半鞅,我们证明了即使没有正则性,参数函数也满足广义Riccati积分方程。这推广了时间齐次仿射过程的一个重要结果。我们还证明了随机连续仿射半鞅本质上是由我们称之为绝对连续仿射半鞅的确定性时间变化生成的。这些过程推广了时间齐次正则仿射过程。在第二部分中,我们考虑了一类仿射LIBOR市场模型。我们从两个方面对这类模型做出了贡献。首先,我们修改了仿射伦敦银行同业拆借利率市场模型的原始设置,以便在非负仿射过程旁边也可以使用实值仿射过程。数值例子表明,这允许更灵活的隐含波动率曲面。其次,我们介绍了仿射通货膨胀市场模型,这是仿射LIBOR市场模型的一个扩展。一个校准实例表明,这些模型在拟合通货膨胀衍生品的市场观察价格方面表现良好。
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Pricing of Securities 证券定价
分类描述:Valuation and hedging of financial securities, their derivatives, and structured products
金融证券及其衍生产品和结构化产品的估值和套期保值
--
---
PDF下载:
-->