英文标题:
《Clustering Financial Time Series: How Long is Enough?》
---
作者:
Gautier Marti, S\\\'ebastien Andler, Frank Nielsen, Philippe Donnat
---
最新提交年份:
2016
---
英文摘要:
Researchers have used from 30 days to several years of daily returns as source data for clustering financial time series based on their correlations. This paper sets up a statistical framework to study the validity of such practices. We first show that clustering correlated random variables from their observed values is statistically consistent. Then, we also give a first empirical answer to the much debated question: How long should the time series be? If too short, the clusters found can be spurious; if too long, dynamics can be smoothed out.
---
中文摘要:
研究人员利用30天到几年的每日收益率作为源数据,根据它们的相关性对金融时间序列进行聚类。本文建立了一个统计框架来研究这种做法的有效性。我们首先表明,从观测值中聚类相关随机变量在统计学上是一致的。然后,我们也给出了一个备受争议的问题的第一个实证答案:时间序列应该是多长?如果太短,发现的簇可能是虚假的;如果时间太长,动态可以被平滑。
---
分类信息:
一级分类:Statistics 统计学
二级分类:Machine Learning
机器学习
分类描述:Covers machine learning papers (supervised, unsupervised, semi-supervised learning, graphical models, reinforcement learning, bandits, high dimensional inference, etc.) with a statistical or theoretical grounding
覆盖机器学习论文(监督,无监督,半监督学习,图形模型,强化学习,强盗,高维推理等)与统计或理论基础
--
一级分类:Quantitative Finance 数量金融学
二级分类:Statistical Finance 统计金融
分类描述:Statistical, econometric and econophysics analyses with applications to financial markets and economic data
统计、计量经济学和经济物理学分析及其在金融市场和经济数据中的应用
--
---
PDF下载:
-->